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Rapid and reliable assessment of soil characteristics is 
an important step in agricultural and natural resource 
management. Over the last few decades, diffuse reflec-
tance spectroscopy (DRS) has emerged as a new tool 
to obtain both qualitative and quantitative informa-
tion on soil in a non-invasive manner. The DRS ap-
proach is attractive because both the proximal and 
remote mode of measurements may be adopted to es-
timate multiple attributes of soil such as physical and 
chemical soil properties and nutrient contents from a 
single reflectance spectrum. Hyperspectral imaging 
cameras onboard remote sensing platforms are already 
providing hundreds of narrow, contiguous bands of 
reflectance values and the technology is becoming 
popular as the hyperspectral remote sensing (HRS) 
approach. The main objective of this review is to 
summarize the preparedness and opportunities for  
using the HRS approach for soil assessment in India. 

Detailed literature review suggests that the HRS  
approach requires large spectral databases and robust 
spectral algorithms in addition to the capability to in-
terpret HRS images. Over the last decade, few efforts 
have been made to create spectral libraries for Indian 
soils. However, most of these libraries are very small, 
precluding the development of robust spectral algo-
rithms. Specifically, the availability of HRS data and 
robust retrieval algorithms for soil properties from 
HRS data through unmixing procedures require spe-
cial attention. With several global initiatives to make 
HRS data available, coordinated efforts are needed in 
India to build comprehensive spectral libraries, algo-
rithms and create trained human resources to take 
full advantage of this emerging technology. Specifi-
cally, a dedicated spaceborne mission will provide 
quality hyperspectral data for the effective application 
of HRS for soil assessment in India. 
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Introduction 

RAPID and reliable assessment of soil characteristics is an 
important step in agricultural and natural resource man-
agement. In general, soils are opaque to most sensing 
methods. For example, microwave radiations penetrate 
only a few centimetres of the topsoil; visible (VIS) and 
infrared radiations can barely penetrate through the soil 
surface. Consequently, most soil assessments are per-
formed under laboratory conditions. Laboratory methods 
used for estimating soil chemical properties are based on 
wet chemistry with tedious and time-consuming sample 
preparation and analyses steps. Assessment of soil physi-
cal attributes generally takes a longer time than chemical 

attributes. Soil properties widely vary both in time and 
space1. Consequently, rapid and in situ assessment of soil 
properties even in near-real time remains a formidable 
task despite decades of research and development in soil 
testing. 
 Over the past few decades, remote sensing approaches 
provide some solution for rapid soil assessment2. These 
approaches are fast, nondestructive and have large spatial 
coverage. There are four factors that influence the remote 
sensing (especially optical) signature of soil – mineral 
composition, organic matter, soil moisture and texture3. 
Remote sensing data have been used for soil classifica-
tion, soil resources mapping4,5, soil moisture assessment6 
and soil degradation (salinity) mapping7 among many 
others. Particularly, hyperspectral remote sensing (HRS) 
is emerging as a promising tool for its capability to 
measure the reflectance of earth surface features such as 
soil, water, vegetation, etc. at hundreds of contiguous and 
narrow wavelength bands. Availability of such a large 
pool of spectral information offers an opportunity to  
estimate multiple soil attributes from the same reflectance 



SPECIAL SECTION: HYPERSPECTRAL REMOTE SENSING 
 

CURRENT SCIENCE, VOL. 108, NO. 5, 10 MARCH 2015 861 

spectra with greater specificity than their multispectral 
counterpart. 
 Diffuse Reflectance Spectroscopy (DRS) in the VIS, 
Near-Infrared (NIR), and Shortwave-Infrared (SWIR)  
regions (350–2500 nm) forms the basis of HRS. Chemi-
cal bonds of different molecules vibrate at characteristic 
frequencies when exposed to electromagnetic energy.  
Energy absorbed, reflected and scattered in the process 
may, therefore, be related to specific wavelengths8. Such 
specificity (reflectance at characteristic wavelength) may 
be treated as a unique spectral feature in unique corre-
spondence to the composition of the end-member. In par-
ticular, the specificity allows for the assessment of 
different soil attributes once spectral reflectance is known 
and a relationship between the spectral feature and soil 
attribute is known a priori. Thus, spectral signatures are 
often considered as inherent soil properties that vary 
across different soils9. 
 Laboratory-scale studies have clearly shown that the 
DRS approach may be used for estimating several soil 
properties such as soil texture10, organic carbon (OC) 
content11–13, nutrient content such as nitrogen (N)14, 
phosphorus (P), potassium (K)15, electrical conductivity 
(EC)16, cation exchange capacity (CEC)17, iron (Fe) con-
tent11, soil moisture content18, carbonates19 and hydraulic 
properties20. Recently, the DRS approach was shown to 
be successfully used for estimating the parameters (median 
aggregate diameter and standard deviation) of lognormal 
aggregate size distribution function of soils21. Several  
reviews demonstrate the potential of the DRS approach as 
an emerging technology in soil assessment9,22. 
 To utilize the HRS technology, high-resolution optical 
and thermal sensors are used to first create a spectral  
repository of reflectance spectra under controlled labora-
tory conditions with associated soil properties. Such 
spectral libraries are then used for developing spectral  
algorithms, for transforming processed hyperspectral  
signals into meaningful soil attributes. Although a few 
spectral libraries exist in developed countries, regional 
databases on basic soil properties and soil reflectance 
spectra are still being created in different parts of the 
world. Recently, a global spectral library with 3768 soils 
was developed in which only 104 soils were from the 
whole of Asia23. In India, only a fewer spectral libraries 
with different soil properties exist20,60,61. With a large 
variation in soil properties across our country, there is a 
requirement for developing more extensive spectral  
libraries representing specific regions and rightly there 
are initiatives to expand existing spectral libraries into a 
national soil spectral library24,25. In this article, funda-
mentals of DRS technology as applied to soil studies 
have been presented. Spectral libraries for typical Indian 
soils have been summarized. The preparedness and  
opportunities for combining the developed spectral librar-
ies with the remotely sensed hyperspectral data are high-
lighted. 

Spectral features of selected soils of India 

Figure 1 shows the average spectral reflectance of some 
selected soils from different parts of India. It may be 
noted that the reflectance characteristics varies across soil 
types. As expected, darker Vertisols of Karnataka show 
minimum soil reflectance at all wavelengths compared 
the lighter Inceptisols of Uttar Pradesh (soils of Agra  
region) and Aridisols of Rajasthan (soils of Jodhpur  
region); deep red Alfisols of lateritic origin show inter-
mediate reflectance values. Such distinct variations in 
spectral reflectance show promise of distinguishing major 
soil orders across large landscapes. With regard to differ-
ent spectral bands, the VIS spectral features generally  
account for the electronic transitions (ET) associated with 
the iron-bearing minerals such as hematite and goethite26. 
The NIR absorptions (700–2500 nm) are associated with 
the overtones and combination bands of covalent bonds 
between O–H, C–H and N–H atoms27. The O–H functional 
groups in minerals and all the above functional groups in 
organic matter (OM) are responsible for the characteristic 
absorptions in the NIR reflectance spectra28.  
 Typically, all soil spectra show three prominent  
absorption peaks around 1400, 1900 and 2200 nm. The 
absorption peaks at 1400 and 1900 nm indicate the first 
overtone of O–H stretches and the combination of H–O–H 
bending with O–H stretching29 and are generally termed 
as water absorption peaks. The absorption between 2200 
and 2300 nm is mainly due to the combination of metal–
OH bending and O–H stretching associated with the clay 
content mineral30. Other absorption bands in the NIR  
region are due to iron oxides between 870 and 1000 nm 
and carbonates between 2200 and 2500 nm. Carbonates 
have a strong overtone band between 2300 and 2350 nm 
and three weaker combination bands near 2120–2160, 
1970–2000 and 1850–1870 nm (ref. 31). 

Factors influencing soil reflectance 

Soil reflectance is a collective response of different soil 
factors (chromophores) to electromagnetic radiation. Soil 
chromophores are classified as chemical and physical 
chromophores32 based on their nature of influence on the 
soil spectrum. The chemical chromophores absorb inci-
dent energy at discrete wavelengths, while the physical 
chromophores influence the entire spectrum33. Thus, any 
variation with regard to absorption features may indicate 
the presence or absence of chemical chromophores, while 
a change in the shape of the reflectance spectra accounts 
for the influence of physical chromophores. The chemical 
chromophores in the soil consist of moisture content,  
organic matter, clay minerals and iron oxides. Similarly, 
particle size and sample geometry are considered as 
physical chromophores32.  
 Inverse relationship exists between soil moisture content 
and spectral reflectance34. Spectral reflectance decreases 
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Figure 1. Average spectral reflectance for the selected soils of India. 
 
 

 
 

Figure 2. Typical soil spectral reflectance curves under varying soil wetness conditions. 
 
 
with increase in gravimetric soil moisture content35, as 
shown in Figure 2. The O–H bond present in water is the 
strongest absorber of NIR radiation. Fundamental absorp-
tion of water in the liquid phase occurs at 3106, 6079 and 
2903 nm associated with the symmetric O–H stretching, 
H–O–H bending and asymmetric O–H stretching respec-

tively31. The overtones of O–H stretching occur near 
1400 nm and a combination of the H–O–H bending and 
O–H stretching occurs around 1900 nm (ref. 29). 
 A combination of metal–OH bending and O–H stretch-
ing occurs near 2200 to 2300 nm (ref. 31). Soil moisture 
has a dramatic influence on soil albedo and may influence 
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other chromophores36. Soil OM and its products after  
decomposition appear to have noticeable influence on the 
spectral reflectance of mineral soils37. Remarkable in-
crease in the spectral reflectance may be observed if OM 
is removed from the soil34. The absorption features asso-
ciated with OM in the VNIR wavelength are often weak 
and may not be readily perceptible to the naked eye38. But 
a broad and clear distinction in the overall reflectance 
with OM content is generally seen in the VIS region39. 
Similarly, clay minerals have a major influence on the 
VNIR portion of spectral reflectance13,40. The OH func-
tional group is associated with the mineral structure  
(lattice water), mostly in 2 : 1 type octahedral sheets or 
with the water molecules adsorbed to the mineral sur-
face41. Thus, all the absorption features related to OH 
may also be linked to explain the influence of clay miner-
als on spectral reflectance of the soil. Iron content has a 
significant role in defining the shape of the reflectance 
spectra due to the ET of Fe2+ and Fe3+ present in the soil 
as iron oxides or impurities3. Spectral reflectance  
decreases with the increase in particle size. Bowers and 
Hanks34 verified that the spectral reflectance of the soil 
increases exponentially with the decrease in particle size 
and the increment was found to be rapid below 0.4 mm 
diameter. They observed that the soil surface becomes 
smooth as the particle size decreases and thus they related 
the soil reflectance as a function of its surface roughness. 
As the soil surface roughness increases, major portion of 
the incident energy gets trapped in the inter-aggregate 
spaces resulting in lower reflectance21,39. 

Spectral libraries and spectral algorithms 

A spectral library is an essential component in the analy-
sis of HRS data for the prediction of soil properties42, soil 
classification43 and digital mapping28. Bellinaso et al.44 
summarized that (a) a spectral library should have suffi-
cient number of samples representing the variability of 
soils found in the region to which it refers, (b) samples 
must be carefully sub-sampled, handled, prepared, stored 
and scanned, and (c) the reference data from the samples 
to be used in the calibrations must be acquired through 
recognized and trusted analytical procedures. Table 1 lists 
the major soil spectral libraries across the world45. The 
spectral library of soils developed by The Soil Spectro-
scopy Group was collected from 43 countries across the 
world. The soils in the International Centre for Research 
in Agroforestry and International Soil Reference and  
Information Centre (ICRAF–ISRIC) library were col-
lected from 785 soil profiles across the five continents. 
The world soil spectral library23 contains information on 
3768 samples from USA and two tropical territories and 
an additional 416 samples from 36 different countries in 
Africa (125), Asia (104), America (75) and Europe (112). 
It may be noted that very little information on the soils of 
Asia is available. Recently, several studies have reported 

the use of regional or national spectral libraries in charac-
terizing local-scale soil properties46. 
 Spectral algorithms are developed using a combination 
of data-mining algorithms for feature extraction and mul-
tivariate regression for the calibration and validation of 
spectral algorithms23,30,40. Spectral reflectance consists of 
information on both the composition (absorption) and 
scattering (Rayleigh and Lorentz-Mie) of incident EMR. 
The scattering component is of least significance in the 
context of soil compositional analysis, as it does not have 
energy transfer with the soil sample. But it may cause 
undesirable variations (baseline shifts and nonlinearity) 
in the spectra47. Thus, the scattering component has to be 
effectively eliminated from the reflectance signal. Also, 
accuracy of prediction may improve with pre-processing. 
The pre-processing techniques may be categorized under 
scatter correction methods and spectral derivatives47.  
The scatter correction methods consist of multiplicative 
scatter correction (MSC), detrending (DT), standard  
normal variate (SNV) and normalization. The spectral  
derivative method consists of first derivatives (FD) and 
second derivatives (SD) of the reflectance spectrum. SNV 
and DT eliminate the multiplicative interferences of  
scatter and particle size and account for the variation in 
baseline shift and curvilinearity in diffuse reflectance 
spectra48. 
 One of the important steps in DRS data modelling is 
the selection of an appropriate subset for calibration and 
validation. The adoption of a suitable data-partitioning 
scheme depends on the type of method used for model-
ling. Generally, linear models entail even distribution of 
samples, whereas the nonlinear models are sensitive to 
specific distribution of samples over the entire measure-
ment space. The most common method used by soil spec-
troscopic scientists for subset selection is that of random 
selection49. The other major challenge in spectroscopic 
studies is the number of samples required for calibration. 
Effects of calibration sample size on the predictive per-
formance have been examined40. The rate of performance 
degradation was less for large calibration size. But a 
rapid decrease in the performance was noted for calibra-
tion size between 100 and 200 samples. Recently, ade-
quate prediction of soil OC and texture properties at 
 
 

Table 1. Soil spectral libraries across the world  
  (compiled from Stevens et al.45) 

Spatial scale N 
 

Global  5,223 
Global  4,436 
Global  4,184 
Eastern and southern Africa  1,000 
Sub-Saharan Africa 17,000 
Australia 10,677 
Europe  20,000 

N, Number of soil samples. 
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the farm-scale was shown with just 79 samples50. Al-
though there are many studies with less than 50 samples 
in calibration51, it is difficult to draw general conclusions 
about the minimum sample size required for calibration.  
 The early phases of soil spectroscopic studies used 
multiple linear regression (MLR) for model develop-
ment51. The drawback of the MLR approach is that it 
cannot account for the multi-collinearity associated with 
the reflectance signal. Limited studies have attempted to 
use stepwise multiple linear regression (SMLR) for 
model calibration52. With the ability to resolve the multi-
collinearity issue and dimension reduction, the principal 
component regression (PCR) technique of eigen value 
decomposition gained importance in soil spectroscopic 
studies53. A method similar to PCR is the partial least 
square regression (PLSR) approach54, where both the pre-
dictor and response variables are used to build scores 
with the greatest predictive power. The PLSR algorithm 
integrates the compression and regression steps and  
selects successive orthogonal factors that maximize the 
covariance between predictor and response variables26. 
Majority of the soil spectroscopic studies conducted so 
far used PLSR55 or modified PLSR56 for model calibra-
tion. The other advanced regression methods used in soil 
spectroscopic studies are multivariate adaptive regression 
splines40, regression tree23 and committee trees57. The 
performances of nonlinear techniques such as artificial 
neural networks, support vector machine and genetic  
algorithm in soil spectroscopy have also been examined. 
 Generally, the simple linear relationship between the 
observed and model-predicted values is evaluated based 
on R2 and the root-mean-squared error (RMSE). Both R2 
and RMSE are range-dependent58. Thus, most of the 
spectroscopic studies use standardized form of RMSE 
such as the residual prediction deviation (RPD) crite-
rion53. Table 2 lists performance statistics for several soil 
properties. 

HRS utilization for soil assessment in India 

Building a national soil spectral library 

In India, limited efforts have been made for spectral  
library generation. The National Bureau of Soil Survey 
and Land Use Planning (NBSS&LUP), Nagpur, deve-
loped a spectral database of 128 surface soils collected 
from different physiographic/climatic regions of India59. 
Spectral reflectance properties (350–1800 nm) of some 
dominant soils occurring at different altitudinal zones in 
Uttaranchal Himalayas have also been examined60.  
 The spectral characteristics were explained with regard 
to the shape of the spectral curve and reflectance percent-
age at different wavebands. The correlation of selected 
soil properties such as pH, OC, FeO, Fe2O3, dry soil 
moisture, clay, silt and sand with the reflectance for  

limited number (n = 40) of soil samples was also exam-
ined60. Based on the correlation coefficient values it was 
concluded that the soil spectral reflectance decreased 
with increase in OC (r = –0.91) and soil moisture content 
(r = –0.68). Srivastava et al.61 studied the spectral reflec-
tance (350–2500 nm) properties of some shrink–swell 
soils (n = 135) of Central India. The soil properties ana-
lysed in the study include soil colour, sand, silt, clay, pH, 
EC, OC, CaCO3, exchangeable Ca, Mg, K, Na, CEC,  
exchangeable sodium percentage and CEC : clay ratio. 
They noticed significant correlation of soil albedo (aver-
age of the relative reflectance) with soil Munsell colour 
value (r = 0.505), chroma (r = 0.496), OC (r = –0.39), 
clay (r = –0.263) and CEC (r = –0.405). Spectral data 
modelling using SMLR was done for the prediction of 
soil properties. The SMLR model was calibrated with a 
dataset of 65 soil samples, whereas the remaining 70 
samples were used for validation. Good calibrations were 
obtained for pH (R2 = 0.87), OC (R2 = 0.71), CEC 
(R2 = 0.77) and clay (R2 = 0.61) and R2 for validation lay 
between 0.56 and 0.77 for these soil properties.  
 Santra et al.20 characterized soil hydraulic properties 
by means of proximal spectral reflectance in 350–
2500 nm wavelength range using 100 soils from a micro-
watershed near Chilika Lake, Odisha. The hydraulic 
properties such as saturated hydraulic conductivity and 
the parameters of water retention model were estimated 
by pedotransfer functions (PTFs) and spectrotransfer 
functions (STFs). The PTFs/STFs were developed using 
MLR with basic soil properties, proximal spectral reflec-
tance, integrated band reflectance, continuum removal 
(CR) factor and a combination of integrated band reflec-
tance and CR factors separately as predictor variables and 
the individual hydraulic property as the response variable. 
Results in terms of RMSE revealed that STFs had similar 
accuracy as PTFs for estimating hydraulic properties. 
Gulfo et al.62 assessed soil moisture content using hyper-
spectral reflectance (350–2500 nm) data of 240 samples 
collected from 80 sampling points at three different 
depths from the Indian Agricultural Research Institute 
farm, New Delhi. The results of the regression approaches 
suggest that both the SMLR (R2 = 0.799) and the princi-
pal component analysis approach (R2 = 0.805) may be 
used for the estimation of soil moisture from reflectance. 
Divya et al.63 used hyperspectral reflectance (350–
2500 nm) to analyse the textural and compositional char-
acteristics of 36 sand samples with varying clay contents 
collected from a river and beach near Chennai city. Sev-
eral samples were prepared with varying proportions of 
sand and clay to examine the influence of clay on the 
spectral characters of a sand–clay admixture. Spectral 
separability based on Euclidean distance in various wave-
length regions for the different mixtures was computed. 
Results indicated that sand and clay can be easily dis-
criminated because of high spectral separability between 
them, especially in the 450–1100 nm region. The study 
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Table 2. Regression statistics of prediction for selected soil properties using diffuse reflectance spectroscopy 

Property Pretreatment R2 RMSE RPD Reference 
 

Basic soil properties 
Sand (%) FD 0.60 9.46 1.60 55 
Clay (%) SNV 0.82 3.93 2.38 55 
OC (%) SG + FD 0.29 4.60 1.12 2 
pH ABS 0.79 0.10 3.23 49 
pH SNV + FD 0.62 0.35 1.69 55 
EC (dS/m) SNV 0.51 0.03 1.34 55 
 
Nutrient content 
P (mg/100 g) MaxN + FD + SG 0.69 1.35 1.80 15 
P (mg/kg) Raw 0.47 22.57 1.34 55 
K (mg/kg) ABS 0.62 44.60 1.59 49 
S (mg/kg) SNV 0.50 2.21 1.31 55 
Zn (mg/kg) ABS 0.78 0.25 2.08 49 
Zn (mg/kg) FD 0.18 10.74 1.10 55 
Fe (%) ABS – 2.61 1.81 73 

R2, Coefficient of determination; RMSE, Root mean square error; RPD, Residual prediction deviation; ABS,  
Absorbance; FD, First derivative; SNV, Standard normal variate; SG, Savitzky–Golay smoothing; MaxN, Maxi-
mum normalization; DT, Detrending. 

 

identified reliable spectral parameters such as depth, 
slope, position, peak reflectance, area under the curve and 
radius of the curve for the estimation of compositional 
and textural characteristics based on the correlation bet-
ween them.  
 Recently, under a NAIP project, laboratory-measured 
soil spectral reflectance data (350–2500 nm) of the Indo-
Gangetic Plains covering parts of Punjab and Haryana 
were calibrated with soil properties of agronomic impor-
tance using PLSR technique for rapid prediction of soil 
properties25,64,65. The application of calibration models on 
validation datasets (those not used for calibration)  
resulted in very good prediction of OC content (n = 320, 
R2 = 0.81, RMSEP = 0.116, RPD = 2.30) and available K 
(n = 320, R2 = 0.78, RMSEP = 0.243, RPD = 2.13), ECe 
(n = 402, R2 = 0.94, RMSE = 5.33, RPD = 3.99), satura-
tion extract Ca2+ + Mg2+ (n = 401, R2 = 0.81, RMSE = 
1.51, RPD = 2.40), saturation extract Na+ (n = 402, R2 = 
0.88, RMSE = 2.45, RPD = 2.89), saturation extract Cl– 
(n = 402, R2 = 0.92, RMSE = 2.16, RPD = 3.44), satura-
tion extract SO2

4
– (n = 402, R2 = 0.67, RMSE = 2.21, 

RPD = 1.60) and CaCO3 (n = 436, R2 = 0.66, RMSE = 
0.79, RPD = 1.72). 
 Kadupitiya et al.66 assessed some of the soil properties 
such as mineralizable N, available P and K, extractable 
Mn, Fe, Cu, Zn, CaCO3, OC, EC, pH, soil texture, bulk 
density, particle density and hydraulic conductivity (Ks) 
using DRS of 85 pre-processed soil samples collected 
from farmers’ fields of Jalandhar, Punjab, India. Based 
on adjusted R2 of the predicted models, FD of absorbance 
was found suitable for the model predicting N, while its 
SD of absorbance was best for Mn, Fe and Zn prediction 
models. Similarly, SD of reflectance yielded good predic-
tion for P and Cu and its FD for K prediction. The highest 
predictability (adjusted R2) was 0.93 recorded for CaCO3, 

while the lowest of 0.68 was obtained for N. Based on 
RPD and range error ratio (RER), these authors con-
firmed that N, P, K, Mn, Fe, CaCO3, OC, pH, EC, sand, 
silt and clay were predicted well. Sarathjith et al.21 ex-
tended the utility of DRS approach to estimate aggregate 
size characteristics of soils. The geometric mean diameter 
(GMD) and median aggregate diameter of the aggregate 
size distribution function were accurately estimated for 
Vertisols (n = 247) and Alfisols (n = 249) of Karnataka. 
 Ray et al.13 used ground-based hyperspectral data for 
soil discrimination and parameter estimation. Two visibly 
similar soil types (sandy loam and loamy sand) were  
selected for the study. Spectral data were collected using 
ASD ground spectroradiometer. Five spectral indices 
[brightness index = ((B2 + G2 + R2)/3)0.5; saturation index = 
(R – B)/(R + B); hue index = (2*R – G – B)/(G – B); col-
ouration index = (R – G)/(R + G) and redness index = 
R2/(B*G3)] were computed using both narrow-band and 
simulated broad-band spectral data. Stepwise discrimi-
nant analysis was carried out to find out the optimum  
indices for soil discrimination. The results showed that 
saturation index was the best to separate sandy loam and 
loamy sand soils. The regression equations developed be-
tween soil parameters and spectral indices were highly 
significant for OC (R2 = 0.785), available K (R2 = 0.812), 
sand (R2 = 0.819), silt (R2 = 0.783) and clay (R2 = 0.644) 
content, suggesting that these parameters may be esti-
mated from reflectance data.  

Soil resources study in using hyperspectral  
imaging data 

Extending laboratory-level spectroscopic studies for  
larger areas or spatially distributed phenomena is now 
possible with the introduction of imaging spectroscopy or 
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HRS image data. Retrieval of soil properties in spatial 
scale from image spectroscopy would facilitate digital 
soil mapping and understanding soil processes in spatio-
temporal scale. However, the transfer of relationships  
established at the laboratory level up to higher scales 
poses several problems associated with possible factors 
of confusion, such as (i) changes in soil roughness, mois-
ture, illumination and view conditions; (ii) sensor charac-
teristics like spectral and spatial resolution, radiometric 
calibration which may also change relationships between 
measured reflectance and actual soil characteristics, and 
(iii) possible atmospheric effects19,67. There are detailed 
studies on atmosphere correction of the HRS image68,69. 
Due to atmospheric influences and mixed pixel effects on 
the signals, application of HRS image data is still chal-
lenging to the research community30. There have been a 
few studies of using HRS imaging data for soil classifica-
tion and parameter estimation. Most of these studies have 
been carried under a national-level project on hyperspec-
tral remote sensing applications of Space Applications 
Centre (SAC), ISRO, Ahmedabad70. 
 A comprehensive study was carried out over the 
Jalandhar region of Punjab to evaluate the HRS approach 
for measuring soil properties such as available N, P, K, 
OC, CaCO3, sand, silt and clay using the Hyperion hyper-
spectral satellite remote sensor data and in situ data  
collected under field and laboratory conditions71. Spectral 
reflectance, absorbance and their first and second deriva-
tives were used to develop models to find a suitable one 
for assessing soil properties. It was found that irrespec-
tive of sensor and platforms, derived spectral parameters 
such as FD and SD of reflectance and absorbance were 
found to better suited than original reflectance data for 
developing prediction models for soil properties. Predic-
tion models in the case of laboratory condition were bet-
ter (having adjusted R2 for all eight parameters ranging 
from 0.65 to 0.87) compared to field condition (adjusted 
R2 ranging from 0.39 to 0.7) and were found to be worst 
for models from satellite-derived reflectance (adjusted R2 
ranging from 0.28 to 0.52). Two major attributes to such 
low model accuracy are: (i) poor signal-to-noise-ratio, 
and (ii) aggregate effect of pixel-covered area (30  
30 m2) on spectral value of Hyperion pixel. An attempt 
was made to compare the satellite-derived soil OC map 
and conventionally generated OC map using geostatisti-
cal technique. Predicted and measured had good agree-
ment with a R2 value of 0.61.  
 Similarly, a joint study undertaken by NBSS&LUP, 
Nagpur and SAC, Ahmedabad showed significant nega-
tive correlation between soil OC and soil reflectance data 
of 139 bands of Hyperion image. SMLR was used to  
develop a spectral model (R2 = 0.51) for the prediction of 
OC from soil reflectance data24. Ghosh et al.72 used  
Hyperion data over Udaipur city to estimate soil fertility 
parameters (OC, available N, available P, available K, 
exchangeable Ca, exchangeable Mg and available S). Sta-

tistical analysis was performed to optimize the number of 
spectral bands and spectral parameter to be used for esti-
mating soil nutrient content for the unknown pixels of the 
image. Spectral bands were optimized using correlogram 
and spectral parameters were optimized using multiple 
regression analysis. Similarly, the PLSR analysis on soil 
OM, sand, silt, clay and N, P, K contents carried out with 
the Indian hyperspectral imager (HySI) data in Jalandhar 
district, Punjab showed the RPD values ranging from 
0.95 for available P to 4.9 for clay content69. 

Conclusions 

Currently, most soil analyses in India are done through 
chemical analysis. There are about 1049 soil testing labs 
operating in the country with an annual analysing capa-
city of 10.7 million samples. The country has approxi-
mately 121 million agricultural fields (a bounded piece of 
land) and the capacity of soil testing labs simply lags far 
behind the requirement. Moreover, almost no efforts are 
made to monitor soil physical properties or soil water-
holding attributes at a national scale and hence water re-
source management in India is based on the distribution 
and supply of water instead of actual crop requirement. 
Under such a scenario, very high spectral, spatial and 
temporal resolutions of HRS technology offer an attrac-
tive alternative for soil testing in a rapid and non-invasive 
fashion. However, there are technological challenges to 
accomplish the HRS utility. First, high-resolution HRS 
data and the technical skills to analyse such data must be 
available. Secondly, national and regional spectral librar-
ies with proven spectral algorithms should also be in 
place to derive farmer-friendly HRS data products. Third, 
the HRS data are highly collinear with inherently low  
signal-to-noise ratio and are a mixed signal. Data ana-
lytics and robust algorithms to analyse such ‘near-big 
data’ must be developed in-house to make the technology  
affordable. Fourth, like any remote sensing data, HRS is 
also limited for getting information about the surface soil. 
There is a need to develop models to extend the surface 
soil information to profile parameters. Also, soil assess-
ment by remote sensing is marred by the vegetation 
cover. Hence, it is essential to identify typical plant  
signatures from hyperspectral reflectance to indirectly  
infer the soil properties. However, with improvement in 
data availability (including India’s proposal to launch  
hyperspectral sensors in GISAT-1 and Cartosat-3), multi-
variate analysis techniques and modelling tools, it is  
expected that hyperspectral data, in near future, may be 
used for operational soil health monitoring. Specifically, 
a dedicated spaceborne mission from polar orbits would 
provide further impetus to the application of HRS for soil 
assessment by providing quality hyperspectral data. 
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